SYLLABUS

OF

B. TECH

OF

II YEAR

B. TECH. (CBCS)

DEPARTMENT OF CIVIL ENGINEERING

INTEGRAL UNIVERSITY LUCKNOW

SYLLABUS AND EVALUATION SCHEME

Branch: Civil Engineering

(w.e.f. 2020-21)

Year - II, Semester - III

S.	Comman			P	erioc	ls	Credits	E	Evaluation Scheme			
	Cotogory	Code No	Name of Subject	L	Т	P	С	Sess	sional l	Exam	Exam	Subject Total
No.	Category			L	1	r	C	CT	TA	Total	ESE	Total
1	BS	MT201	Engineering Mathematics-III	3	1	-	4	40	20	60	40	100
2	DC	CE201	Fluid Mechanics	3	1	-	4	40	20	60	40	100
3	DC	CE202	Basic Surveying	3	1	-	4	40	20	60	40	100
4	DC	CE203	Building Material and Construction	3	1	-	4	40	20	60	40	100
5	DC	CE204	Strength of Material	3	1	-	4	40	20	60	40	100
6	ESA	ES202	Disaster Management	2	1	-	3	40	20	60	40	100
			PRACTICAL A	/ DRAWING / DESIGN								
7	DC	CE205	Fluid Mechanics Lab	0	0	2	1	40	20	60	40	100
8	DC	CE206	Basic Surveying Field Work	0	0	2	1	40	20	60	40	100
9	DC	CE207	Building Planning & Drawing	0	0	2	1	40	20	60	40	100
10	DC	CE208	Material Testing Lab	0	0	2	1	40	20	60	40	100
Total				20	6	8	27					1000

L – Lecture; T – Tutorial; P – Practical; C – Credits; CT – Class Test; TA – Teacher Assessment **Sessional Total** (CA) = Class Test + Teacher Assessment

Subject Total = Sessional Total (CA) + End Semester Examination (ESE)

BS – Basic SciencesDC – Departmental CoreHM – HumanitiesOE – Open Elective

DE – Departmental Elective **ESA** – Engineering Science & Art (Foundation Course & Engineering Courses)

SYLLABUS AND EVALUATION SCHEME

Branch: Civil Engineering

(w.e.f. 2020-21)

Year – II, Semester – IV

S.	Commo			P	Period	ls	Credits	Evaluation Scheme				Subject
No.	Course Category	Code No	Name of Subject	L	Т	P	C		sional l		Exam	Total
110.	Category			L		1	C	CT	TA	Total	ESE	Total
			THEC)RY	SUB	JEC'	T					
1	ESA	MT205	Computer Based Numerical Techniques	3	1	-	4	40	20	60	40	100
2	DC	CE209	Hydraulic & Hydraulic Machines	3	1	-	4	40	20	60	40	100
3	DC	CE210	Advance Surveying	3	1	-	4	40	20	60	40	100
4	DC	CE211	Concrete Technology	3	1	-	4	40	20	60	40	100
5	DC	CE212	Structure Analysis-I	3	1	-	4	40	20	60	40	100
6	ESA	CS203	Cyber Law & Information Security	2	1	-	3	40	20	60	40	100
7	НМ	BM226	Human Value & Professional Ethics	3	0	-	0	-	-	-	50	50
			PRACTICAL A	/ DR	AWI	NG /	DESIGN	1				
8	DC	MT209	Numerical Techniques Lab	0	0	2	1	40	20	60	40	100
9	DC	CE213	Hydraulic & Hydraulic Machines Lab	0	0	2	1	40	20	60	40	100
10	DC	CE214	Advance Surveying Field Work	0	0	2	1	40	20	60	40	100
11 DC CE215 Concrete Technology Lab		0	0	2	1	40	20	60	40	100		
Total					6	8	27					1000

L – Lecture; T – Tutorial; P – Practical; C – Credits; CT – Class Test; TA – Teacher Assessment **Sessional Total** (CA) = Class Test + Teacher Assessment

Subject Total = Sessional Total (CA) + End Semester Examination (ESE)

BS – Basic SciencesDC – Departmental CoreHM – HumanitiesOE – Open Elective

DE – Departmental Elective **ESA** – Engineering Science & Art (Foundation Course & Engineering Courses)

Effective from Session: 2	Effective from Session: 2017-18											
Course Code	MT201	Title of the Course	Engineering Mathematics – III	L	T	P	C					
Year	II	Semester	III	3	1	0	4					
Pre-Requisite	Complex Variables, Calculus, Ordinary Differential Equations.	Co-requisite	NIL									
Course Objectives	complex variables parameters of a sy controllers. To specify some d To understand the To specify probaboutcomes.	To learn the analysis of stem for different stand difficult integration that a method of finding the solility is an area of study given periodic function	problems as analytic function and their study of a system in time domain and predict the trainant inputs. To understand the basic concepts of appear in applications can be solved by complexeries solution of Bessel's and Legendre's differency which involves predicting the relative likely and defined in the given range in terms of sine and	nsien f diff integential y ho	erent gration equat od of	orman types n. ions vario	nce s of ous					

	Course Outcomes
CO1	To solve Engineering problems using complex variable techniques.
CO2	To evaluate the line integrals of a complex valued function.
CO3	To apply the analytical technique to express periodic function as a Fourier sine and cosine series. Determine Z transform of DT signal and specify ROC, Using Z-transform properties to solve such problems efficiently.
CO4	To apply the concept of probability to find the physical significance of various distribution phenomena.
CO5	To apply series solution of Bessel's differential equations for BVP.

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO
1	Complex Variable	Analytic functions, C-R equations and harmonic functions, Lin e integral in the complex plane, Cauchy's integral theorem, Cauchy's integral formula for derivatives of analytic functions, Liouville's theorem, Fundamental theorem of Algebra.	80	CO1
2	Complex Variable II	Representation of a function by power series, Taylo r's and Laurent's series, singularities, zeros and poles, Residue theorem, evaluation of real integrals of type $\int_0^{2\pi} f(\cos\theta.\sin\theta)d\theta$ and bilinear transformations.	08	CO2
3	Integral Transforms	Fourier integral, Fourier complex transform, Fourier sine and cosine transforms and applications to simple heat transfer equations. Z -transform and its application to solve difference equations.	08	CO3
4	Probability and Descriptive Statistics	Probability, Correlation and Regression, Binomial distribution, Poisson distribution, Normal distribution.	08	CO4
5	Series Solution	Series solutions of ODE of 2nd order with variable co-efficient with special emphasis to differential equations of Bessel, Bessel functions and their properties	08	CO5

Reference Books:

Kreyszig E. (1993): Advanced Engg. Mathematics John Willey & Sons inc.S. Hasan Saeed, Automatic Control System, Kataria and sons, New Delhi.

Dennis G. Zill: Advanced Engineering Mathematics, CBS Pub.

B.S. Grewal: Higher Engineering Mathematics, Khanna Pub. Katsuhiko Ogata, Modern Control Engineering, PHI

H.K. Dass: Advanced Engineering Mathematics, (S. Chand & Company

e-Learning Source:

https://nptel.ac.in/courses/111103070

https://nptel.ac.in/courses/111102129

https://www.youtube.com/watch?v=nkOjzzWmDmA
https://nptel.ac.in/courses/111106112

		Course Articulation Matrix: (Mapping of COs with POs and PSOs)												
PO-PSO	- PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS0										DCO1	DCO1		
CO	POI	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	1	2	2	1	0	0	0	1	0	2	1	1
CO2	3	2	1	2	2	1	0	0	0	0	0	2	1	1
CO3	3	2	1	1	1	1	0	0	0	0	0	2	1	1
CO4	3	2	1	2	3	1	0	0	0	1	0	2	1	1
CO5	3	1	1	1	2	1	0	0	0	0	0	2	1	1

1- Low Correlation; 2- Moderate Correlation; 3- Substantial Correlation

Name & Sign of Program Coordinator	Sign & Seal of HoD

Effective from Session: 20	Effective from Session: 2015-16								
Course Code	CE201	Title of the Course	Fluid Mechanics	L	T	P	C		
Year	II	Semester	III	3	1	0	4		
Pre-Requisite	NIL	Co-requisite	NIL						
Course Objectives		behavior at rest and in	understand the basics of the fluid mechanics such motion and fundamental equations like mass, energ						

	Course Outcomes						
CO1	Students are able to understand basic concept of properties of fluid and its properties.						
CO2	Students are able to understand the Kinematics and Dynamics of Fluid and its application.						
CO3	To understand the concept of fluid measurement, types of flows and dimensional analysis.						
CO4	To determine the losses in a flow system, flow through pipes, boundary layer flow and flow past immersed bodies.						
CO5	Students are able to understand the concept of turbulent flow in in pipe and its nature.						

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO
1	Introduction & Fluid Statics	 Introduction: Fluid Statics Fluid and continuum, physical properties of fluids, ideal and real fluids, Newtonian and Non-Newtonian fluids, measurement of surface tension. Fluid Statics: Pressure-density-height relationship, measurement of pressure, manometers, pressure on plane and curved surfaces, centre of pressure, buoyancy, stability of immersed and floating bodies, fluid masses subjected to uniform acceleration. 	08	CO1
2	Kinematics & Dynamics of Fluid Flow	Kinematics of Fluid Flow: Steady and unsteady, uniform and non-uniform, laminar and turbulent flows, one, two and three dimensional flows, streamlines, streak lines, and path lines, continuity equation, rotation and circulation, elementary explanation of stream function and velocity potential, graphical and experimental methods of drawing flow nets. Dynamics of Fluid Mechanics: Euler's equation of motion along a streamline, Bernoulli's equation from Euler's equation. Application of Bernoulli's equation-Pitot Tube, flow through orifice, mouthpieces, nozzles, notches, weirs, Venturimeter, Orifice meter, sluice gates under free and submerged flow conditions. Aeration of nape, cavitations, free and forced vortex, momentum equation and its application to stationary and moving vanes, pipe bends, and problems related to combined application of energy and momentum equations, flow measurements, determination of C _v , C _c and C _d , energy loss.	08	CO2
3	Dimensional Analysis & Laminar Flow	Dimensional Analysis and Hydraulic Similitude: Dimensional analysis, Buckingham's π theorem, important dimensional numbers and their significance, similitude, similarity laws, geometric, Kinematics and dynamic similarity, model studies. Laminar Flow: Equation of motion for laminar flow through pipes, Stoke's Law, flow between parallel plates, flow through porous media, Fluidization, measurement of viscosity	08	CO3
4	Turbulent Flow & Boundary Layer Analysis	Turbulent Flow: Transition from laminar to turbulent flow, equation for turbulent flow, eddy viscosity, mixing length concept and velocity distribution in turbulent flow, Hot-wire anemometer and LDA. Boundary Layer Analysis: Boundary layer thicknesses, boundary layer over a flat plate, laminar boundary layer, application of momentum integral equation, turbulent boundary layer, laminar sub-layer, smooth and rough boundaries, atmospheric boundary layer, local and average friction coefficient, separation of boundary layer and its control, measurement of shear.	08	CO4
5	Flow Past Submerged	Flow Past Submerged Bodies: Drag and lift, drag on sphere, Cylinder and disc, lift, Magnus effect and circulation.	08	CO5

Bodies & Pipe	Pipe Flow: Nature of turbulent flow in pipes, equation for velocity distribution		
Flow	over smooth and rough surfaces, resistance coefficient and its variation, flow in		
	sudden expansion, contraction, diffusers, bends, valves and siphons, concept of		
	equivalent length, branched pipes, pipes in series and parallel, simple networks.		
	Compressibility Effects in Pipe Flow: Transmission of pressure waves in rigid and		
	elastic pipes; Water hammer, analysis of simple surge tank excluding friction.	ı	

Reference Books:

Grade, R.J and A.G Mirajgaoker, 'Engineering Fluid Mechanics (including Hydraulic Machines), Second Edition, Nem Chand and Bros., Roorkee, 1983

R. K. Bansal, 'Fluid Mechanics and Hydraulic Machines', Laxmi Publication, New Delhi 2007

R.K. Rajput, 'Fluid Mechanics and Hydraulic Machines', S.Chand Publication, New Delhi 2002

Hunter Rouse," Elementary Mechanics of Fluid", John Wiley & Sons. Omc/.1946.

Grade, R.J 'Fluid Mechanics through Problems.', Wiley Eastern Limited, New Delhi, 1989

e-Learning Source:

https://nptel.ac.in/courses/105103095/7

https://nptel.ac.in/downloads/103104043/

https://nptel.ac.in/courses/112105171/8

https://nptel.ac.in/courses/112105183/

		Course Articulation Matrix: (Mapping of COs with POs and PSOs)												
PO-PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO	POI	102	103	104	103	100	107	100	109	1010	ron	FO12	1301	1302
CO1	2	1	1	0	2	2	0	0	1	0	0	1	2	3
CO2	3	0	1	0	2	1	0	0	1	0	1	1	3	2
CO3	2	3	2	2	2	1	0	0	1	1	1	2	2	2
CO4	2	0	2	1	2	2	0	0	1	0	2	1	2	2
CO5	3	2	1	0	0	2	0	0	1	0	0	1	2	3

Name & Sign of Program Coordinator	Sign & Seal of HoD

Effective from Session: 2019-20												
Course Code	CE202	Title of the Course Basic Surveying		L	T	P	C					
Year	II	Semester	III	3	1	0	4					
Pre-Requisite	NIL	Co-requisite	NIL									
Course Objectives	advancTo lear of the a	ed surveying instruments. n about the process of esta irea.	of measurements of distances, directions and elevation blishment of horizontal control points necessary for capreparations of topographical maps of the areas.	•								

	Course Outcomes								
CO1	The students have the ability to understand the measurement techniques and equipment used in land surveying.								
CO2	The students have the ability to take angular measurement from compass and correct them from different errors.								
CO3	The students have an ability to calculate the linear measurement and area of the land.								
CO4	The students will Gain the ability to measure differences in elevation								
CO5	The students will be able to represent the topography of the land graphically.								

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO
1	Introduction to Basic Surveying	Introduction: Importance of surveying to Engineers- Examples from different branches; plane and Geodetic Surveying, Control points, Classification of surveys, Methods of location a point, , principles of surveying, Conventional signs, Surveying instruments, their care and adjustment. Measurement of Distances: Measurement by chain and tape. Source of errors and precautions, Corrections to tape measurements, Field problems, Use and adjustment of auxiliary instruments, Modern trends EDM and Total Station	08	1
2	Measurement of Angles and Bearings	Measurement of Angles and Directions: Reference meridians and Bearings, Magnetic declination and its variations. Use of prismatic and surveyor compass, local attraction, Vernier and microptic theodolites, Temporary and permanent adjustments, Requirements of nonadjustable parts, Measurement of horizontal and vertical angles by different methods.	08	2
3	Traversing and Tachometry	Measurement of Angles and Directions: Reference meridians and Bearings, Magnetic declination and its variations. Use of prismatic and surveyor compass, local attraction, Vernier and microptic theodolites, Temporary and permanent adjustments, Requirements of nonadjustable parts, Measurement of horizontal and vertical angles by different methods.	08	3
4	Levelling	Measurement of Elevations: Different methods of determining elevations: Spirit, Trigonometric and Barometric methods, Spirit leveling- Definitions of terms, principle, Temporary and permanent adjustment of dumpy level. Sensitivity of bubble tube, Automatic levels, Levelling staff, Methods of spirit leveling Booking and reduction of fields notes, Curvature and refraction, Reciprocal leveling, plotting of profiles, Barometric leveling. Trigonometric leveling, sources of errors and precision of leveling procedures.	08	4
5	Contouring and Sheet	Contouring: Definition and characteristics of contours, contour interval, Use of contour maps, storage capacity of reservoir, direct and Indirect methods of contouring. Sheet Numbering System: CIM and I and A.C series, Scales and Numbering of Indian Topographic maps	08	5
Referer	nce Books:			

Agor, R, "Surveying", Vol. I & II, Khanna Publications, Delhi, 1995.

Arora, K, R., "Surveying", Vol. I & II, Standard Book House, Delhi, 1993.

Bannister, A. and Baker, R., "Solving Problems in Surveying "Longman Scientific Technical, U.K., 1994.

Kennie, T.J.M. and Petrie, G., "Engineering Surveying Technology", Blackie & Sons Ltd., London, 1990.	
e-Learning Source:	
https://nptel.ac.in/courses/105107122/	

		Course Articulation Matrix: (Mapping of COs with POs and PSOs)												
PO-PSO	DO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO	PO1	PO2	PO3	PO4	103	100	107	100	109	1010	1011	PO12	1301	PS02
CO1	2	2	1	1	1	0	0	0	2	1	0	1	0	0
CO2	2	1	1	0	1	1	0	0	1	0	1	1	0	0
CO3	1	1	1	0	1	0	0	0	1	0	0	0	0	0
CO4	2	2	1	1	1	0	1	0	2	1	0	1	0	0
CO5	2	1	1	1	0	0	0	0	1	1	0	1	0	0

Name & Sign of Program Coordinator	Sign & Seal of HoD

Effective from Session: 2020-21												
Course Code	CE203	Title of the Course	Building Material and Construction	L	T	P	C					
Year	II	Semester	III	3	1	0	4					
Pre-Requisite		Co-requisite										
Course Objectives	To learTo learTo learTo lear	n about the types of four n about various types of	e	tuatio		ermit	e trea					

	Course Outcomes
CO1	To develop sound knowledge, understanding and awareness of various materials used in construction industry.
CO2	To learn and understand various construction techniques and get aware about different problems faced and their remedial measures.
CO3	To understand the types of amenities that are to be provided in a building during construction and their respective measures and applications.
CO4	To enable the students to learn about the various services treatments required for its safety.
CO5	To enable the students to learn about the various services required and its applications.

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO
1	Introduction to Building Materials	Building Materials: Classification, properties and selection criteria of Bricks, Stone, Lime, Timber, Mortar: Types, classification and strength, I.S. specifications.	08	CO1
2	Advance Building Materials used in Construction	Classification, properties and selection criteria Plywood, Glass, plastics, P.V.C. Steel, Aluminum, Gypsum, pozzolana, Asphalt, Bitumen and Tar, Metals, insulating material.	08	CO2
3	Building Bye Laws	Building Construction: Classification of buildings, Recommendations of NBC, Building byelaws, modular co-ordinations; orientation of buildings, desirable conditions of comforts, and components of building area considerations. Types of foundations and selection criteria, causes of unequal settlement.	08	CO3
4	Treatment in Construction	Prefabricated construction. Plastering and pointing, Damp Proofing Materials and techniques, Antitermite treatment. Types of floors, construction details and selection criteria, Types of Roofs and roof covering, treatment of water proofing, Doors and Windows: Sizes and locations, materials.	08	CO4
5	Building Services	Stair and Staircases; types, materials, proportions. Lifts and escalators, White washing, colour washing, painting, distempering. Shuttering, Scaffolding and centering, Expansion and Construction joints. Sound and fire proof construction, I.S. specifications.	08	CO5

Reference Books:

Jha. J. & Sinha S.K., "Building Construction", Khanna Publishers, Delhi,1977

Arora, S.P & Bindra S.P.," A Text Book of Building Construction", Dhanpat Rai & Sons., Delhi 1977.

Kulkarni, C.J, "A Text Book of Engineering Construction", Ahmedabad Book Depot, Ahmedabad, 1968.

Kumar Sushil, "Engineering Material", Standard Publishers Distributors, Delhi, 1944.

McKay W.B. ,"Building Construction", Vol. 1 to 4, Orient Longman Ltd., Hyderabad, Bombay, Madras, Delhi, Vol. 1 & 2-1955, Vol. 3-1996, Vol.4-1998.

e-Learning Source:

https://nptel.ac.in/courses/105102088/

				Course A	Articulat	tion Mat	rix: (Ma	pping of	COs wit	h POs a	nd PSOs)		
PO-PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO	POI	PO2	103	104	103	100	107	100	109	1010	1011	PO12	P501	P502
CO1	3	3	0	3	0	0	0	0	0	0	0	0	3	2
CO2	3	3	0	3	0	0	0	0	0	0	0	0	3	2
CO3	3	3	0	3	0	0	0	0	0	0	0	0	3	2
CO4	3	3	0	3	0	0	0	0	0	0	0	0	3	2
CO5	3	3	0	3	0	0	0	0	0	0	0	0	3	2

Name & Sign of Program Coordinator	Sign & Seal of HoD

Effective from Session: 2019-20												
Course Code	CE204	Title of the Course	Strength of Materials	L	T	P	C					
Year	II	Semester	III	3	1	0	4					
Pre-Requisite		Co-requisite										
Course Objectives	To for beamsTo fanTo int buckling	m bending moment equation iniliarize with strain energy roduce methods in order to a load of long columns. part knowledge in order to	veloped in structural members including their materia ons, shear force equations and bending stress diagram and the theories of failure. To calculate the deflections and rotations of a deter- tion access the stress and strain developed in cylindra	n for a	a dete	ermir ams	and					

	Course Outcomes
CO1	In-depth understanding of stress strain relationship and of various properties for different materials with ability to calculate stress-strain for different structural members subjected to given loading conditions.
CO2	Interpretation of bending moments, shear forces and bending stresses for determinant beams under different loading and support conditions. Be able to analyze the effects of torsion on shafts.
CO3	Insight of strain energy in a structural element subjected to various types of forces and understanding of different failure theories.
CO4	Ability to calculate the deflections and rotations of a beam under given loading and support conditions and be able to comprehend the buckling loads of a long column according to its support conditions.
CO5	Ability to analyze the stresses and strains associated with thin- thick wall cylindrical and spherical pressure vessels.

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO
1	Stress - Strain	Stress and Strain: Concept of stress and strain relationship, Ductility, Toughness, Elastic constants, Hardness, Brittleness, Tension, Compression, Shear, and Elongation, Concept of thermal stresses [5] Principal stresses: Stress transformation, Application of Mohr's circle in stress analysis [3]	08	CO1
2	Bending & Torsion Theory	Bending of Beams: Review of bending of beams, shear forces & bending moment diagrams for statically Determinant Beams, Shearing and bending stresses in beam section. [5] Torsion of Shafts: Torsion of circular shaft, power transmitted by shaft, combined bending and torsion in shafts. [3]	08	CO2
3	Strain Energy and Theories of Failure	Strain Energy and Impact Loading: Concept of strain energy or resilience, Strain energy in simple tension and compression, Stress due to different types of loading. [4] Theories of Failure: Maximum principal stress theory, Maximum shear stress theory, Maximum principal strain theory, Strain energy theory, Shear strain energy theory and their comparison.[4]	08	CO3
4	Slope & Deflection and Compression Members	Deflection of Beams: Deflection of beams, Integration method, Macaulay's method, Area Moment method, Conjugate Beam method. [4] Columns and Struts: Theory of columns & struts, Elastic stability, End conditions, Effective length and Buckling load, Euler's and Rankine's formulae and their limitations.	08	CO4
5	Thin and Thick Cylinder	Thin Cylinders: Theory of thin cylinders subjected to pressure, expression for hoop stress and longitudinal stress, Design of thin cylinders, Thin walled pressure vessels and uniform torsion. [4] Thick Cylinders and Spherical Shells: Stresses and strain in thick shells/cylinder subjected to pressures, compound cylinders press fits on solid shaft.[4]	08	CO5

Reference Books:

Kazmi, S. M. A., 'Solid Mechanics' TMH, Delhi, India.

R. K. Rajput, 'Strength of Materials', S. Chand & Company Ltd., New Delhi.

Norris, C.H. and Wilber, J. B. 'Elementary Structural Analysis' McGraw Hill.

Timoshenko, S. and Young, D. H., 'Elements of Strength of Materials', New York.

Surendra Singh, 'Strength of Materials', Vikas Publishing House Pvt. Ltd., New Delhi.

e-Learning Source:

 $https://nptel.ac. in/Aeronautical/Strength \%\,20 of \%\,20 Materials/course_strength \%\,20 of \%\,20 materials.pdf$

https://nptel.ac.in/courses/105105108/

https://nptel.ac.in/downloads/105105108/

	Course Articulation Matrix: (Mapping of COs with POs and PSOs)													
PO-PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO	POI	102	103	104	103	100	107	100	109	1010	ron	FO12	1301	1302
CO1	3	3	0	3	0	0	0	0	0	0	0	0	3	2
CO2	3	3	0	3	0	0	0	0	0	0	0	0	3	2
CO3	3	3	0	3	0	0	0	0	0	0	0	0	3	2
CO4	3	3	0	3	0	0	0	0	0	0	0	0	3	2
CO5	3	3	0	3	0	0	0	0	0	0	0	0	3	2

Name & Sign of Program Coordinator	Sign & Seal of HoD

Effective from Session:	2016-17						
Course Code	ES202	Title of the Course	Disasters Management	L	T	P	C
Year	II	Semester	III	2	1	0	3
Pre-Requisite	10+2 having a minimum of 45 % marks in the aggregate from a recognized Board/University	Co-requisite					
Course Objectives	Knowledge oTo learn abouBasic conceptTo know the	t risk reduction approache ts of Disaster Managemen	issasters, and Case studies of National and Globa es of Disasters with safety issues in mitigating In t Cycle and its Risk Reduction Measures. cies for mitigating disasters. Role of Army,	ndust	rial di	saster	

	Course Outcomes
CO1	Students are able to learn types of disasters and its profile in India.
CO2	Students are able to understand the causes and impacts of disasters on environment.
CO3	Students are able to learn about risk reduction approaches of disasters with safety issues in mitigating industrial disasters.
CO4	To understand the concept of Disaster Management Cycle and its Risk Reduction

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO		
1	Introduction to disaster	Introduction to Disasters, Concepts, Definition and types (Natural and Man-made), Disaster profile of India.	08	CO1		
2	Impact of Disaster	npact of Disaster Causes and Impacts of Disasters, Global and National Perspective, Case studies from Disasters, Large Hydro projects and its risks for Disasters.				
3	Disaster Risk Reduction	Approaches to Disaster risk Reduction, Safety issues in mitigating Industrial disasters, Case studies, EHS etc.	08	CO4		
4	Disaster Management	Disaster Management Cycle, Risk Reduction Measures (Preparedness, Mitigation, Response.	08	CO3		
5	Disaster Act. and Policies	National Acts and policies for mitigating Disasters (Disaster Management Act 2005, NDRF,	08	CO3		

Reference Books:

Gupta Harsh K., Disaster Management, Hyderabad University Press. Publications-Meerut.

Sethi, V.K., Disaster Management, New Delhi Maxford Books.

Bhattacharya, Tushar, Disaster Science and Management, New Delhi Tata Mc Graw Hill.

Nidhi Gauba, Dhawan/ Ambrina Sardar Khan, Disaster Management and Preparedness, CBS.

e-Learning Source:

https://www.youtube.com/watch?v=9WIwlljva_s

https://www.youtube.com/watch?v=uA_OLKfQpYA

		Course Articulation Matrix: (Mapping of COs with POs and PSOs)													
PO-PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	
CO	POI	POZ	PO3	PO4	PO5	POO	PO/	PU	PO9	POIU	POII	PO12	PS01	PSU2	
CO1	2	1	1	1	1	3	2	1	1	2	1	1	1	1	
CO2	2	2	2	1	3	3	2	2	2	2	2	1	1	1	
CO3	3	2	2	1	2	3	2	2	2	1	2	1	1	1	
CO4	3	2	2	1	2	3	2	2	1	1	2	1	1	1	
CO5	3	1	3	2	2	2	2	3	2	1	2	1	1	1	

1-Low Correlation; 2- Moderate Correlation; 3- Substantial Correlation

Name & Sign of Program Coordinator	Sign & Seal of HoD

Effective from Session: 2015-16												
Course Code	CE205	Title of the Course	Fluid Mechanics Lab	L	T	P	C					
Year	II	Semester	III	0	0	2	1					
Pre-Requisite		Co-requisite										
Course Objectives		such as variation of velocity	to make the students in better understanding of fluid and pressure, measurement of flow rate by various of									

	Course Outcomes						
CO1	Students are able to learn the concept of Buoyancy and Metacenter Height in a ship model						
CO2	Students are able to learn the concept of Bernoulli's Theorem and its application.						
CO3	Students are able to learn to find the discharge using Venturimeter and Orifice meter.						
CO4	Students are able to learn to find the discharge using Orifice meter.						
CO5	Students are able to learn to find the Coefficient of Discharge in rectangular and triangular notch.						
CO6	Students are able to verify the Impulse Momentum equation experimentally						
CO7	Students are able to plot flow pattern net using the Hele-shaw apparatus.						
CO8	Students are able to study the variation of friction factor 'f', for turbulent flow in commercial pipes.						

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO
1	Experiment-1	To determine experimentally the meta-centric height of a ship model.	02	1
2	Experiment-2	To verify the Bernoulli's equation experimentally.	02	2
3	Experiment-3	To verify the Impulse Momentum equation experimentally.	02	3
4	Experiment-4	To plot flow net using the Hele-shaw apparatus.	02	4
5	Experiment-5	To calibrate an orifice meter and study the variation of the coefficient of discharge with the Reynolds number.	02	5
6	Experiment-6	To calibrate an venturimeter and study the variation of the coefficient of discharge with the Reynolds number.	02	6
7	Experiment-7	To calibrate a given V-notch and Rectangular notch and determine the coefficient of discharge.	02	7
8	Experiment-8	To study the variation of friction factor 'f', for turbulent flow in commercial pipes.	02	8
Referen	nce Rooks:			

Reference Books:

- 1. Lab Manual Provided by the Department.
- 2. Modi P.N. and Seth S.N., "Hydraulics and Fluid Mechanics", Standard Book House, Delhi, India.
- 3. Shames, "Mechanics of Fluids", McGraw-Hill, Auckland, N. Land.
- 4. Garde R.J., "Fluid Mechanics" RPH, Roorkee, India. Additional Learning Source.

		Course Articulation Matrix: (Mapping of COs with POs and PSOs)												
PO-PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO	roi	PO2	PO3	PO4	105	P00	ro/	rus	P09	POIU	POII	PO12	P501	PSO2
CO1	3	0	0	3	0	0	0	0	0	0	0	0	1	3
CO2	2	0	0	2	0	0	0	0	0	0	0	0	1	3
CO3	2	0	0	2	0	0	0	0	0	0	0	0	2	2
CO4	2	0	0	3	0	0	0	0	0	0	0	0	1	3
CO5	2	0	0	3	0	0	0	0	0	0	0	0	2	2
CO6	2	0	0	1	0	0	0	0	0	0	0	0	1	2
CO7	2	0	0	2	0	0	0	0	0	0	0	0	1	2
CO8	3	0	0	3	0	0	0	0	0	0	0	0	2	2

Name & Sign of Program Coordinator	Sign & Seal of HoD

Effective from Sessio	Effective from Session: 2015-16								
Course Code	CE206	Title of the Course	Basic Survey Field Work	L	T	P	C		
Year	II	Semester	III	0	0	2	1		
Pre-Requisite	NIL	Co-requisite	NIL						
Course Objectives	techniquesTo use tecTo use tec	s and equipment used in lan hniques, skills, and modern	s, science, and engineering to understand the d surveying. engineering tools necessary for engineering engineering tools necessary for engineering	pract	ice.	eme	nt		

	Course Outcomes					
CO1	Students are able to perform ranging and taking offset along a survey line.					
CO2	Students are able to find out the reduced level of given points using Dumpy level by height of collimation method.					
CO3	3 Students are familiar about Auto level and find out the reduced levels of given points by rise and fall method.					
CO4	O4 Students are able to perform fly leveling with a level.					
CO5	Students are able to draw the longitudinal and cross sectional profiles along a given route.					
CO6	Students are familiar about use of transit theodolite and total station.					
CO7	Students are able to measure horizontal angle by Repetition method using transit theodolite.					
CO8	Students are able to measure horizontal angle by reiteration method using transit theodolite					
CO9	Students are able to determine the Tacheometric constants of a given Theodolite.					
CO10	Students are able to to determine the bearing of a given traverse using prismatic compass and plotting of the traverse.					
CO11	Students are able to determine the elevations of a given point.					

Unit No.	Content of Unit	Contact Hrs.	Mapped CO
1	Ranging and taking offset along a survey line.	02	1
2	To find out the reduced level of given points using Dumpy level by height of collimation method.	02	2
3	Study of Auto level and find out the reduced levels of given points by rise and fall method.	02	3
4	To perform fly leveling with a level.	02	4
5	To draw the longitudinal and cross sectional profiles along a given route.	02	5
6	Study of transit theodolite and total station.	02	6
7	Measurement of horizontal angle by Repetition method using transit theodolite.	02	7
8	Measurement of horizontal angle by reiteration method using transit theodolite	02	8
9	Determination of the Tacheometric constants of a given Theodolite.	02	9
10	To determine the bearing of a given traverse using prismatic compass and plotting of the traverse.	02	10
11	Students are able to determination of the elevations of a given point.	02	11

Reference Books:

Lab Manual Provided by the Department.

Kanetkar, T. P., "Surveying and Levelling" Vol I and II, Pune Vidyarthi Griha Prakashan, Pune, India.

Punmia, B. C., "Surveying Vol I and II" Laxmi Publications, Delhi, India.

		Course Articulation Matrix: (Mapping of COs with POs and PSOs)												
PO-PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO	POI	POZ	PO3	PO4	PO5	100	107	100	10)	POIU	1011	1012	1301	PS02
CO1	2	0	0	0	2	0	0	0	1	2	0	2	3	3
CO2	2	0	0	1	2	0	0	0	2	2	0	3	3	3
CO3	2	0	0	1	2	0	0	0	1	2	0	2	3	3
CO4	2	0	0	1	2	0	0	0	2	2	0	3	3	3
CO5	2	0	0	2	2	0	0	0	2	2	0	2	3	3

Name & Sign of Program Coordinator	Sign & Seal of HoD

Effective from Session: 2	Effective from Session: 2019-20										
Course Code	CE207	Title of the Course	Building Planning And Engineering Drawing	L	Т	P	C				
Year	II	Semester	III	0	0	2	1				
Pre-Requisite		Co-requisite									
Course Objectives		ble the students how to rea part the knowledge of draw	d the drawings. the various elements of the building.								

	Course Outcomes						
CO1	To Enable the students to have a knowledge of Symbols to be used in Civil Engineering Drawing.						
CO2	To learn how to draw Brick Masonry Bonds.						
CO3	To learn how to draw Panelled Door (Plan, Section & Elevation).						
CO4	To enable the student to draw Glazed Window (Plan, Section & Elevation).						
CO5	To have a knowledge & draw the Staircase (Plan, Section & Elevation).						
CO6	To enable to draw the Building Plan, Section & Elevation).						
CO7	To enable to draw the Electrical Drawing of a Building.						
CO8	To enable to draw the Plumbing and Sanitary Drawing of a Building.						
CO9	To enable to draw the Plan for a residential building using Drawing Sheet along with AUTO CADD system.						

Unit No.	Content of Unit	Contact Hrs.	Mapped CO
1	Symbols Used in Civil Engineering Drawing.	02	CO1
2	Brick Masonry Bonds.	02	CO2
3	Panelled Door (Plan, Section & Elevation).	02	CO3
4	Glazed Window (Plan, Section & Elevation).	02	CO4
5	Staircase (Plan, Section & Elevation).	02	CO5
6	Comprehensive Drawing of Building (Plan, Section & Elevation).	02	CO6
7	Electrical Drawing of a Building.	02	CO7
8	Plumbing and Sanitary Drawing of a Building.	02	CO8
9	Preparation of Plan for a residential building using Drawing Sheet along with AUTO CADD system.	02	CO9

		Course Articulation Matrix: (Mapping of COs with POs and PSOs)												
PO-PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO	101	102	103	PO4	103	100	107	100	109	1010	1011	FO12	1301	1302
CO1	1	0	0	0	0	0	0	0	1	1	1	0	2	2
CO2	1	0	0	0	0	0	0	0	1	1	1	0	2	2
CO3	1	0	0	0	0	0	0	0	1	1	1	0	2	2
CO4	1	0	0	0	0	0	0	0	1	1	1	0	2	2
CO5	1	0	0	0	0	0	0	0	1	1	1	0	2	2
CO6	1	0	0	0	0	0	0	0	1	1	1	0	2	2
CO7	1	0	0	0	0	0	0	0	1	1	1	0	2	2
CO6	1	0	0	0	0	0	0	0	1	1	1	0	2	2
CO7	1	0	0	0	0	0	0	0	1	1	1	0	2	2
CO8	1	0	0	0	0	0	0	0	1	1	1	0	2	2
CO9	1	0	0	0	0	0	0	0	1	1	1	0	2	2

1- Low Correlation; 2- Moderate Correlation; 3- Substantial Correlation

Name & Sign of Program Coordinator Sign & Seal of HoD

Effective from Session: 2	Effective from Session: 2015-16										
Course Code	CE208	Title of the Course	Material Testing Laboratory		T	P	C				
Year	II	Semester	III	0	0	2	1				
Pre-Requisite		Co-requisite									
Course Objectives	To und	To understand the properties of constituents of building materials.									

	Course Outcomes								
CO	Able to evaluate the properties and quality of bricks.								
CO	Ability to test the properties of steel								

S. No.	Title of the Experiments	Content of Unit	Contact Hrs.	Mapped CO
1	Brick Testing	 Water absorption test Dimension tolerance Compressive strength Efflorescence Test 	16	CO1
2	Steel Testing	 Hardness test Impact Test Torsion test Tensile Strength test Double Shear test 	16	CO2

References:

Lab Manual Provided by the Department.

Neville, A.M., "Properties of Concrete", Longman, India.

Jha. J. &Sinha S.K., "Building Construction", Khanna Publishers, Delhi.

Arora, S.P.& Bindra S.P.," A text book of building Construction", DhanpatRai& Sons., Delhi.

Singh Surendra,"Engineering Materials", Konark Publishers Pvt. Ltd.

		Course Articulation Matrix: (Mapping of COs with POs and PSOs)												
PO-PSO	DO1	PO2	DO3	DO4	PO5	DO4	PO7	DO9	PO9	DO10	DO11	DO12	DCO1	DCO2
CO	PO1	POZ	PO3	PO4	P05	PO6	PO	PO8	P09	PO10	PO11	PO12	PSO1	PSO2
CO1	0	0	0	3	3	1	0	3	3	3	0	3	2	2
CO2	0	0	0	3	3	1	0	3	3	3	0	3	2	2

Name & Sign of Program Coordinator	Sign & Seal of HoD

Effective from Session: 2	017 - 18							
Course Code	MT205	Title of the Course	Computer Based Numerical Techniques (For CE Only)	L	T	P	С	
Year	II	Semester	IV	3	1	0	4	
Pre-Requisite		Co-requisite Co-requisite						
Course Objectives	 and St To spe To une To lead engine To un 	ammation of series. ecify some method for intederstand the method of finding the method of finding the problems.	o understand the basic concepts of different types of Dif repolation having equal or unequal interval of argument. ding the approximate solution algebraic & transcendenta the approximate solution of definite integration that frequents of different types of methods for finding the solutily.	ıl equ uentl	atior y occ	is. currec	d in	

	Course Outcomes
CO1	To solve Engineering problems using different operators
CO2	To predict the unknown value by using different interpolating formula.
CO3	To solve the Algebraic & Transcendental Equations by using different Iterative schemes
CO4	To be able to solve the definite Integration by Numerical Methods
CO5	To apply the Numerical method to solve the Ordinary Differential Equations

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO
1	Errors and Finite Differences	Error & their analysis, Computer arithmetic, Floating-point number operation. Finite differences: Difference operator, Difference tables, Factorial polynomials, Summation of series.	08	1
2	Interpolation	Newton's formula, Gauss, Stirling's and Bessel's formula for equal interval, Lagrange's formula and Newton's divided difference formula for unequal interval.	08	2
3	Algebraic & Transcendental Equations	Bisection method, Iteration method, False Position method, Newton-Raphson method, Rate of convergence of methods, Solution of simultaneous equations by Gauss-Seidel's method.	08	3
4	Numerical Differentiation & Integration	Introduction, Numerical differentiation, Numerical integration by Trapezoidal rule, Simpson's 1/3 rule, Simpson's 3/8 rule, Boole's & Weddle's rule, Euler-Maclaurin's formula.	08	4
5	Solution of Ordinary Differential Equations	Taylor's series method, Euler's method, Modified Euler's method, Runge-Kutta method.	08	5

Reference Books:

Introductory Method of Numerical Analysis: Sastry, PHI, New Delhi.

Numerical Methods: Balaguruswamy, TMH, New Delhi.

Q.S. Ahmad, Z.Khan & S.A.Khan, Numerical and Statistical Techniques, Ane Books Pvt. Ltd., New Delhi.

Numerical Methods for Scientific & Engineering Computations: Jain, Iyengar, Jain, New Age International Publication, New Delhi.

Numerical Methods: P. Kandasamy, S. Chand & Company, New Delhi.

e-Learning Source:

https://nptel.ac.in/courses/111103070

https://nptel.ac.in/courses/111102129

https://www.youtube.com/watch?v=nkOjzzWmDmA

https://nptel.ac.in/courses/111106112

PO-PSO	DO1	DO1	DO2	DO4	PO5	DO.	DO7	DO0	DO0	DO10	DO11	DO12	DCO1	DCO2
CO	PO1	PO2	PO3	PO4	103	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	1	2	2	2	1	1	2	3	2	1	1	2	1	3
CO2	3	2	1	2	2	3	1	1	1	1	2	1	2	1
CO3	2	3	1	1	1	1	3	3	1	2	1	2	1	1
CO4	3	2	3	2	3	2	1	2	2	1	2	3	1	2
CO5	1	1	1	1	2	1	1	2	3	3	3	2	3	1

Name & Sign of Program Coordinator	Sign & Seal of HoD

Effective from Session: 2015-16											
Course Code	CE209	Title of the Course	Hydraulic & Hydraulic Machines	L	T	P	C				
Year	II	Semester	IV	3	1	0	4				
Pre-Requisite	CE201	Co-requisite	CE314								
Course Objectives		s are expected to realize the l of Civil Engineering	e importance of Hydraulics & Hydraulic Machines and	d its a	pplic	ation	in				

	Course Outcomes							
CO1	Students will learn basic concept of open channel flow and its types.							
CO2	Students will learn about different equation and their application related to non-uniform flow.							
CO3	Students will learn about basic principle of Gradually Varied flow GVF and its applications.							
CO4	Students will learn about the condition and criteria of flow through hydraulic jump.							
CO5	Students will learn about the Hydraulic machines and there function, application.							

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO
1	Introduction & Uniform Flow	Introduction: Difference between open channel flow and pipe flow, geometrical parameters of a channel, continuity equation. Uniform Flow: Chezy's and Manning's Equations for uniform flow in open channel, velocity distribution, most efficient channel section.	08	1
2	Energy and Momentum Principles	Energy and Momentum Principles: Critical depth, concept of specific energy and specific force, application of specific energy principle for interpretation of open channel phenomenon, flow through vertical and horizontal contractions	08	2
3	Non-uniform Flow in Open Channel	Non-uniform flow in open channel: Equation of gradually varied flow and its limitations, flow classification and surface profiles, integration of varied flow equation by analytical, graphical and numerical methods, flow in curved channel.	08	3
4	Hydraulic Jump & Hydraulic Pumps	Hydraulic Jump, Surges, Water Waves: Classical hydraulic Jump, evaluation of the jump elements in rectangular and non-rectangular channels on horizontal and sloping beds, equation of motion for unsteady flow, open channel surge, celerity of the gravity wave, deep and shallow water waves. Hydraulic Pumps: Rotodymanic pumps, basic equations, axial and mixed flow pumps, cavitation in pumps, characteristic curves.	08	4
5	Hydraulic Turbines	Hydraulic Turbines: Introduction, rotodynamic machines, Pelton turbine, equation for jet and roter size, efficiency, spear valve, reaction turbines, Francis and Kaplan type, head on reaction turbine, basic equation for type, head on reaction turbine, basic equation for rotodynamic machines, similarity law and specified speed, cavitations, characteristic curves.	08	5

Reference Books:

- K. Subramanya: Flow in Open Channels, Tata McGraw Hills, 2014.
- V.T. Chow: Open Channel Hydraulics, Blackburn Press, 2009.
- K. Rang Araju: Open Channel Flow, McGraw Hill Education, 2001.

Madan Mohan Das: Open Channel Flow, PHI Learning Private Limited, 2008

Grade, R.J and A.G Mirajgaoker, 'Engineering Fluid Mechanics (including Hydraulic Machines), Second Edition, Nem Chand and Bros., Roorkee, 1983.

- R. K. Bansal, 'Fluid Mechanics and Hydraulic Machines', Laxmi Publication, New Delhi 2007.
- R.K. Rajput, 'Fluid Mechanics and Hydraulic Machines', S.Chand Publication, New Delhi 2002.

e-Learning Source:

https://nptel.ac.in/courses/105106114/

https://nptel.ac.in/courses/105107059/6

https://nptel.ac.in/courses/105103021/

https://nptel.ac.in/courses/105103096/2

		Course Articulation Matrix: (Mapping of COs with POs and PSOs)												
PO-PSO	DO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO	PO1	PO2	PU3	PO4	PO5	PO	6 PO7	rus	P09	1010	1011	1012	1301	PS02
CO1	2	3	2	0	0	0	2	0	0	1	1	0	2	3
CO2	2	2	3	2	0	1	1	0	0	1	1	1	2	3
CO3	2	3	3	2	0	1	0	0	0	2	0	1	3	2
CO4	2	2	2	3	0	0	0	0	2	2	2	0	2	2
CO5	3	2	2	2	0	1	0	0	3	2	3	1	2	3

	1-Low Correlation	: 2- Moderate Corre	lation: 3- Substant	ial Correlation
--	-------------------	---------------------	---------------------	-----------------

Name & Sign of Program Coordinator	Sign & Seal of HoD

Effective from Session: 2019-20								
Course Code	CE210	Title of the Course	Advance Surveying	L	T	P	C	
Year	II	Semester	IV	3	1	0	4	
Pre-Requisite	CE202	Co-requisite	Nil					
Course Objectives	To learn about the survey of the area.	he process of establishme ea and also learn about that the techniques of layou	the advanced surveying instruments. ent of horizontal control points necessary for neory of error. it: (a) curves in transportation and irrigation	-				

Course Outcomes								
CO1	The students have the ability to prepare a small scale maps.							
CO2	The students have the ability to make control points of long observation and to measure them accurately.							
CO3	The students have an ability to calculate the errors and correct them by applying different numerical methods.							
CO4	The students will be able to make different types of curves used on highways and railway project.							
CO5	The students will be able to tell about the general requirements and specifications of various civil engineering projects.							

Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO
Plane Table Surveys	Plane Table Surveys: Principles, advantages and disadvantages, plane table equipment, Use of Telescopic Alidade and Indian Patterns Tangent Clinometer, different methods of plane table surveying, resection- two and three point problems, Field work in plane table surveying and contouring.	08	1
Trilateration and Triangulation	Trilateration and Triangulation: Principle of Trilateration, EDM instrument and their uses, reduction of observation, principle and classification of Triangulation system, Triangulation chains, strength of figures, station marks and signals, satellite station, intersected and resected points, Field work- Reconnaissance, intervisibility of station, angular measurement, base line measurement and its extension, adjustment of field observation and computation of coordinates.	08	2
Theory of Errors	Adjustment Computations: Weighting of observations, treatment of random errors, probability equation, normal law of errors, most probable value and measures of precision, propagation of errors and variances, most probable value, principle of least square, observations and correlative normal equations, adjustment of triangulation figures and level nets.	08	3
Curves	Curves: Classification of curves, elements of circular, transition and vertical curves, theory and methods of setting out simple, transition and vertical curves, special field problem.	08	4
Project Surveys	Project Surveys: General requirements and specifications for engineering project surveys, Reconnaissance's, preliminary and locations surveys for highways, railways and canals. Correlation of surface and underground surveys in case of culverts, bridges and tunnels. Principles and practice of hydrographic surveys, Layout of culverts, canals, bridges and buildings. Field Astronomy: Astronomical terms, coordinate systems, spherical trigonometry, Astronomical Triangle, relationship between coordinates	08	5
	Surveys Trilateration and Triangulation Theory of Errors Curves	Plane Table Surveys equipment, Use of Telescopic Alidade and Indian Patterns Tangent Clinometer, different methods of plane table surveying, resection- two and three point problems, Field work in plane table surveying and contouring. Trilateration and Triangulation: Principle of Trilateration, EDM instrument and their uses, reduction of observation, principle and classification of Triangulation system, Triangulation chains, strength of figures, station marks and signals, satellite station, intersected and resected points, Field work- Reconnaissance, intervisibility of station, angular measurement, base line measurement and its extension, adjustment of field observation and computation of coordinates. Adjustment Computations: Weighting of observations, treatment of random errors, probability equation, normal law of errors, most probable value and measures of precision, propagation of errors and variances, most probable value and measures of triangulation figures and level nets. Curves: Classification of curves, elements of circular, transition and vertical curves, theory and methods of setting out simple, transition and vertical curves, special field problem. Project Surveys: General requirements and specifications for engineering project surveys, Reconnaissance's, preliminary and locations surveys for highways, railways and canals. Correlation of surface and underground surveys in case of culverts, bridges and tunnels. Principles and practice of hydrographic surveys, Layout of culverts, canals, bridges and buildings. Field Astronomy: Astronomical terms, coordinate systems, spherical trigonometry, Astronomical Triangle, relationship between coordinates	Plane Table Surveys Plane Table Surveys: Principles, advantages and disadvantages, plane table equipment, Use of Telescopic Alidade and Indian Patterns Tangent Clinometer, different methods of plane table surveying, resection- two and three point problems, Field work in plane table surveying and contouring. Trilateration and Triangulation: Principle of Trilateration, EDM instrument and their uses, reduction of observation, principle and classification of Triangulation system, Triangulation chains, strength of figures, station marks and signals, satellite station, intersected and resected points, Field work- Reconnaissance, intervisibility of station, angular measurement, base line measurement and its extension, adjustment of field observation and computation of coordinates. Adjustment Computations: Weighting of observations, treatment of random errors, probability equation, normal law of errors, most probable value and measures of precision, propagation of errors and variances, most probable value, principle of least square, observations and correlative normal equations, adjustment of triangulation figures and level nets. Curves: Classification of curves, elements of circular, transition and vertical curves, theory and methods of setting out simple, transition and vertical curves, special field problem. Project Surveys: General requirements and specifications for engineering project surveys, Reconnaissance's, preliminary and locations surveys for highways, railways and canals. Correlation of surface and underground surveys in case of culverts, bridges and tunnels. Principles and practice of hydrographic surveys, Layout of culverts, canals, bridges and buildings. Field Astronomy: Astronomical terms, coordinate systems, spherical trigonometry, Astronomical Triangle, relationship between coordinates

Reference Books:

Agor, R., "Surveying", vol. II & III Khanna Publications, Delhi, 1995.

Arora, K. R., "Surveying", vol. II & III Standard Publishing House, Delhi, 1993.

Bannister, A. and Baker, R., "Solving Problems in surveying". Longman Scientific Technical, U.K, 1994.

Kennie, T.J.M. and Petrie, G., "Engineering Surveying Technology", Blackie & Sons Ltd., London, 1990.

e-Learning Source:

https://nptel.ac.in/courses/105107158/

		Course Articulation Matrix: (Mapping of COs with POs and PSOs)												
PO-PSO	DO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO	PO1	PO2	PO3	PO4	PO5	POO	0 PO7	100	76 103	1010	1011	1012	1301	P502
CO1	2	1	1	0	2	2	0	0	1	0	0	1	2	3
CO2	3	0	1	0	2	1	0	0	1	0	1	1	3	2
CO3	2	3	2	2	2	1	0	0	1	1	1	2	2	2
CO4	2	0	2	1	2	2	0	0	1	0	2	1	2	2
CO5	3	2	1	0	0	2	0	0	1	0	0	1	2	3

Nama & Sign of Duagram Coordinator	Cian & Cool of HoD
Name & Sign of Program Coordinator	Sign & Seal of HoD

Effective from Session: 2015-16									
Course Code CE211	CE211	Title of the Course	Concrete Technology		T	P	C		
Year	II	Semester	IV	3	1	0	4		
Pre-Requisite	NIL	Co-requisite	NIL						
Course Objectives			Concrete technology which involves types and prop ficance of test on concrete and mix design.	erty of	f con	crete.			

	Course Outcomes
CO1	To understand the manufacturing process of cement and its various properties.
CO2	To learn about various types of cement and test on coarse aggregates.
CO3	To learn about various problems arising while concreting and tests performed on fresh and hardened concrete.
CO4	To learn the procedure of the mix design of concrete as per Indian standard.
CO5	To understand about special concretes

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO
1	Introduction of Cement Concrete	Cement: Manufacture of Portland cement, its composition. Hydration of cement, physical and chemical properties, concept of strength development, Gel space ratio, power's Law, Gel structure [4]. Testing of cement for general physical and chemical properties as per BIS specifications.	08	CO1
2	Types of Cement	Different types of cement such as Slag cement, Portland Pozzolana cement and high Alumina cement, their characteristics, composition, use and properties, aggregates and testing of aggregates, classification source, physical and mechanical properties. Testing of aggregates for physical and mechanical properties	08	CO2
3	Tests on Fresh and Hardened Concrete	Proportioning of concrete, operation involved in concrete production. Workability, factors affecting workability, measurement of workability, problem of segregation, bleeding and Laitance, NDT(Rebound hammer, PUNDIT) methods	08	CO3
4	Mix Design	Concrete Mix Design: Principle and methods, Statistical quality control, concrete rheology, maturity concept, IS code method, ACI code method Admixture in concrete: Introduction, functions, classification, and IS specification.	08	CO4
5	Special Concrete	Special Concrete: Light weight concrete. High density concrete. Sulphar Impregnated concrete, polymer concrete, lime concrete, constituents and uses. High Strength Concrete, Fibre Reinforced Concrete	08	CO5

Reference Books:

Gambhir M.L., "Concrete Technology", - Tata McGraw Hill Publishing Company Ltd., New Delhi.

Shetty M.S, "Concrete Technology, Theory and practices", S. Chand & Company Ltd., New Delhi.

Spence RJS and Cook DJ- "Building Materials in Developing Countries", John Willey and Sons.

Shetty M.S, "Concrete Technology, Theory and practices", S. Chand & Company Ltd., New Delhi.

e-Learning Source:

https://nptel.ac.in/courses/105102012/

https://npetl.ac.in/courses/105104030/

		Course Articulation Matrix: (Mapping of COs with POs and PSOs)												
PO-PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO	POI	PO2	103	PO4	105	PO0	ro/	PU	PO9	POIU	POH	PO12	P301	P502
CO1	2	1	1	0	2	2	0	0	1	0	0	1	2	3
CO2	3	0	1	0	2	1	0	0	1	0	1	1	3	2
CO3	2	3	2	2	2	1	0	0	1	1	1	2	2	2
CO4	2	0	2	1	2	2	0	0	1	0	2	1	2	2
CO5	3	2	1	0	0	2	0	0	1	0	0	1	2	3

Name & Sign of Program Coordinator	Sign & Seal of HoD

Effective from Session: 2	019-20								
Course Code	CE212	Title of the Course							
Year	II	Semester	IV	3	1	0	4		
Pre-Requisite	CE204	Co-requisite	Nil						
Course Objectives	as able To imp compo To imp well as To imp and she To imp different structu To imp	to calculate degree of determent concept of truss, then the und truss for given loads. Part concept of rolling load, to able to draw shear force, be part concept of arches, so that car forces for three hinged are part principle of Strain energy methods. Afters for given load conditions	y, then they should able to know the significances and ter completing they should able to calculate deflection	yse sand and animate ending dapp n in contract of the contract	imple arches e stru g mo licati detern	s as actur omen ons mina	de. nt of		

	Course Outcomes								
CO1	Learners should be able to classify structure in terms of stability and determinacy. Also able to analyze determinate truss for given load & support conditions.								
CO2	Learners should be able to analyze beams/girders subjected to moving load as well as draw the influence lines for reactions, shears, and bending moments by knowing loading conditions.								
CO3	Learner should able to analyze and draw the influence lines for reactions, radial shears, normal thrust and bending moments for three hinged arches by knowing its shapes and loading conditions								
CO4	Learner should know the principle and significance of strain energy methods as well as able to calculate deflections in statically determinate structures by applying strain energy methods for given loading conditions.								
CO5	Learner should able to analysis unsymmetrical beams by knowing the load pattern.								

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO
1	Classification of Structures	Classification of Structures, Types of structural framework, stress resultants, degrees of freedom per node, Static and Kinematic determinacy for beam trusses and building frames, Type of supports. Classification of Pin jointed determinate trusses, Analysis of determinate plane and space trusses, method of Tension coefficient.	08	CO1
2	Rolling Loads	Rolling loads, influence lines for determinate beams and trusses, Absolute maximum bending moment and shear force, Muller-Breslau's principal & its applications for determinate structures	08	CO2
3	Arches	Arches, Types of Arches, Analysis of Arches, Linear arch, Eddy's theorem, Analysis of three hinged arch, spandrel braced arch, moving load & influence lines diagram for three hinged arches.	08	CO3
4	Strain Energy	Strain Energy of deformable systems, Maxwell's reciprocal & Betti's theorem, Castigliano's first theorem, unit load methods for determinate structures.	08	CO4
5	Unsymmetrical Bending	Unsymmetrical bending, location of neutral axis, computation of stresses and deflection, Shear Centre and its location for common structural section. Bending of curved bars in plane of bending, stresses in bars of small & large initial curvatures.	08	CO5

Reference Books:

Wilbur and Norris, "Elementary Structural Analysis", Tata McGraw Hill.

Reddy, C.S., "Basic Structural Analysis", Tata McGraw Hill.

Jain, O.P. and Jain, B.K., "Theory & Analysis of Structures". Vol. I & II Nem Chand.

Jain, A.K., "Advanced Structural Analysis", Nem Chand & Bors, Roorkee, India 1996.

e-Learning Source:

https://nptel.ac.in/downloads/105101085/	
https://nptel.ac.in/downloads/105105109/	
https://nptel.ac.in/youtube.com/watch?v=qhEton-EEOw	
https://nptel.ac.in/courses/105105166/	

		Course Articulation Matrix: (Mapping of COs with POs and PSOs)												
PO-PSO	PO1	DO1	DO2	DO4	DO5	DO.	DO7	PO8	DO0	DO10	DO11	DO12	DCO1	DCO2
CO	POI	PO2	PO3	PO4	PO5	PO6	PO7	PU	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	0	1	0	0	0	0	0	1	0	1	2	2
CO2	3	3	0	1	0	0	0	0	0	1	0	1	2	2
CO3	3	3	0	1	0	0	0	0	0	1	0	1	2	2
CO4	3	3	0	1	0	0	0	0	0	1	0	1	2	2
CO5	3	3	0	1	0	0	0	0	0	1	0	1	2	2

1-Low Correlation; 2- Moderate Correlation; 3- Substantial Correlation

Name & Sign of Program Coordinator	Sign & Seal of HoD

Effective from Session: 2020-21											
Course Code	CS203	Title of the Course	Cyber Law And Information Security	L	T	P	C				
Year	II	Semester	IV	2	1	0	3				
Pre-Requisite	NIL	Co-requisite	NIL								
Course Objectives	 and dor Knowled occurre Knowled integrity 	nain theft. Edge on the disciplines of nee and severity of information of about Information Syy, and availability).	technology, E-business and law to allow them ion security incidents. Instead of the security incidents of the security incidents of the security incidents of the security (a security used to detect and prevent network intrusion).	to m	ninim	ize	the				

	Course Outcomes								
CO1	Understand key terms and concepts in cyber law, intellectual property and cybercrimes(internet security threats), trademarks and domain theft.								
CO2	Keep an appropriate level of awareness, knowledge and skill on the disciplines of technology, E-business and law to allow them to minimize the occurrence and severity of information security incidents.								
CO3	Understand about Information System and principles of Information Security (as confidentiality, integrity, and availability).								
CO4	Understand about cryptography and techniques used to detect and prevent network intrusions.								

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO
1	Fundamentals of Cyber Law	Jurisprudence of Cyber Law, Object and Scope of the IT Act 2000, Introduction to Indian Cyber Law, Unicitral Model Law, ISP Guideline. Intellectual property issues and cyber space, Indian perspective, Overview of Intellectual property related legislation in India, Patent, Copy Right, Trademark law, Law related to semiconductor layout &design.	07	CO1
2	E - Commerce	Security Threats to E - Commerce, Virtual Organization, Business Transactions on Web, EGovernance and EDI, Concepts in Electronics payment systems, E-Cash, Credit/Debit Cards, E- Agreement, Legal recognition of electronic and digital records, E- Commerce Issues of privacy, Wireless Computing- Security challenges in Mobile devices. Digital Signatures - Technical issues, legal issues, Electronic Records, Digital Contracts, and Requirements of Digital Signature System.	08	CO2
3	Investigation and Ethics	Cyber Crime, Cyber jurisdiction, Cyber crime and evidence act, Treatment of different countries of cyber crime, Ethical issues in data and software privacy, Plagiarism, Pornography, Tampering computer documents, Data privacy and protection, Domain Name System, Software piracy, Issues in ethical hacking. Internet security threats: Hacking, Cracking, Sneaking, Viruses, Trojan horse, Malicious Code & logic bombs.Introduction to biometric security and its challenges, Finger prints.Cyber crime forensic: CASE STUDY in Cyber Crime.	09	CO3
4	Information security	Information Systems and its Importance, Role of Security in Internet and Web Services, Principles of Information Security, Classification of Threats and attacks, Security Challenges, Security Implication for organizations, Security services - Authentication, Confidentiality, Integrity, Availability and other terms in Information Security, Information Classification and their Roles. Introduction to Cryptography, Issues in Documents Security, Keys: Public Key, Private Key, Firewalls, Basic Concepts of Network Security, Perimeters of Network protection & Network attack, Need of Intrusion Monitoring and Detection.	09	CO4

Reference Books:

Harish Chander "Cyber Law and IT Protection", PHI Publication, New Delhi

Merkov, Breithaupt," Information Security", Pearson Education

"Cyber Law in India" - Farooq Ahmad-Pioneer books.

K. K. Singh, Akansha Singh "Information Security and Cyber law", Umesh Publication, Delhi

		Course Articulation Matrix: (Mapping of COs with POs and PSOs)													
PO-PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO	101	102	103	104	103	100	107	100	109	1010	ron	FU12	1301	1302	1303
CO1	1	2	2	3	1	2	1	3	1	2	1	2	1	2	2
CO2	3	2	1	1	1	2	3	2	2	2	3	1	3	2	2
CO3	2	2	2	2	1	1	3	2	3	1	1	2	2	1	2
CO4	3	2	1	2	3	1	1	3	2	2	3	3	2	3	1
CO5	1	2	2	3	1	2	1	3	1	2	1	2	1	2	2

Name & Sign of Program Coordinator	Sign & Seal of HoD

Effective from Session: 2016-2017												
Course Code	BM226	Title of the Course	Human Values & Professional Ethics	L	T	P	C					
Year	II	Semester	IV	3	0	0	0					
Pre-Requisite	Nil	Co-requisite	Nil									
Course Objectives	 in the p To justi To crea To insp that eng To crea 	rofession. fy the moral judgment conce te an awareness on Manager ire Moral and Social Values tineers should display conce	nent Ethics and Human Values. and Loyalty. Intended to develop a set of beliefs, attrining morality. ortant global issues: Multinational corporations - Env	itude	s, an	d hal	bits					

	Course Outcomes									
CO1	Know about the concepts of database, their types, design concepts and ER-models									
CO2	Know about the concepts of relational databases, working with SQL for frontend development									
CO3	Know about the concepts of query optimization, transaction processing and concurrency control									
CO4	Know about the concepts of database technologies, distributed database environment									
CO5	Know about the concept of data warehouse, data cleaning and data integration									

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO
1	Human Value Education	Understanding the need, basic guidelines, content and process for Value Education, Self Exploration - Its content and process; 'Natural Acceptance' and Experiential Validation- as the mechanism for self exploration, Continuous Happiness and Prosperity- A look at basic Human Aspirations, Right understanding, Relationship and Physical Facilities- the basic requirements for fulfillment of aspirations of every human being with their correct priority, Understanding Happiness and Prosperity correctly.	06	CO1
2	Introduction to Ethical Concept	Definition of industrial ethics and values, Ethical rules of industrial worker. Values and Value Judgments. Moral Rights and Moral rules, Moral character and responsibilities. Privacy, Confidentiality, Intellectual Property and the Law. Ethics as Law.	06	CO2
3	Professional Responsibility	The basis and scope of Professional Responsibility, Professions and Norms of Professional Conduct, Ethical Standards versus Profession, Culpable mistakes, the Autonomy of professions and codes of ethics. Employee status and Professionalism. Central Professional Responsibilities of Engineers: The emerging consensus on the Responsibility for safety among engineers, hazards and risks	06	CO3
4	Engineers Ethics	Senses of 'Engineering Ethics' - variety of moral issues - types of inquiry - moral dilemmas - moral autonomy - Kohlberg's theory - Gilligan's theory - consensus and controversy - Models of Professional Roles- theories about right action - Self-interest - customs and religion - uses of ethical theories. Valuing Time - Cooperation - Commitment	06	CO4
5	Global Issues	A Glimpse of Life Stories: Life story of Prophet Mohammad, Mahatma Gandhi, Swami Vivekananda, Marie Curie and Steve Jobs. Multinational corporations - Environmental ethics - computer ethics - weapons development - engineers as managers-consulting engineers-engineers as expert witnesses and advisors - moral leadership	06	CO5

Reference Books:

R R Gaur, R Sangal, G P Bagaria, 2009, A Foundation Course in Value Education

Mike Martin and Roland Schinzinger, "Ethics in Engineering", McGraw-Hill, New York 1996.

Govindarajan M, Natarajan S, Senthil Kumar V. S, "Engineering Ethics", Prentice Hall of India, New Delhi, 2004.

e-Learning Source:
Value Education website, http://www.uptu.ac.in.
Story of Stuff, http://www.storyofstuff.com
https://www.youtube.com/watch?v=nlh9V5gd8hg&list=PLbMVogVj5nJQ20ZixllzM69agBq-m8ndV
https://www.youtube.com/watch?v=9LSEBK03CiY&list=PLysZquKdjuWSv87TaE7pByn5TE_e46O2C

		Course Articulation Matrix: (Mapping of COs with POs and PSOs)													
PO-PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO	101	102	103	104	103	100	107	100	109	1010	ron	FU12	1301	1302	1303
CO1	1	2	2	3	1	2	1	3	1	2	1	2	2	2	2
CO2	3	2	1	1	1	2	3	2	2	2	3	1	3	2	2
CO3	2	2	2	2	1	1	3	2	3	1	1	2	2	1	2
CO4	3	2	1	2	3	1	1	3	2	2	3	3	2	3	1
CO5	1	2	2	3	1	2	1	3	1	2	1	2	1	2	2

Name & Sign of Program Coordinator	Sign & Seal of HoD

Effective from Session: 2016 - 17												
Course Code	MT209	7209 Title of the Course Numerical Techniques Lab										
Year	II	Semester	IV	0	0	2	2					
Pre-Requisite		Co-requisite										
Course Objectives			orithm by using 'C' for solving algebraic and transcent polation, definite integration and ordinary differential				1s,					

	Course Outcomes
CO1	To understand the 'C' program for solving the algebraic and transcendental equations approximately.
CO2	To understand the 'C' program for solving the simultaneous linear equations.
CO3	To understand the 'C' program for finding interpolating polynomial.
CO4	To understand the 'C' program for finding solution of definite integration by Trapezoidal and Simpson's 3/8 rule
CO5	To understand the 'C' program for finding solution of ordinary differential equation by using modified Euler's method and
COS	Runge-Kutta method.

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO
1	Practical 1	Algebraic and transcendental equations using Bisection Method, Method of False Position, Newton Raphson Method, also give rate of convergence of roots in tabular form for each method.	06	1
2	Practical 2	Solution of simultaneous linear equations: Gauss Seidel method.	06	2
3	Practical 3	Interpolation by Bessel's functions, Newton's, Stirling's, Lagrange's formulae.	06	3
4	Practical 4	Numerical integration using Trapezoidal and Simpson's 3/8 rule.	06	4
5	Practical 5	Numerical solution of O.D.E. using modified Euler's method and Runge-Kutta method.	06	5

Reference Books:

Kreyszig E. (1993): Advanced Engg. Mathematics John Willey & Sons inc.S. Hasan Saeed, Automatic Control System, Kataria and sons, New Delhi.

Dennis G. Zill: Advanced Engineering Mathematics, CBS Pub.

B.S. Grewal: Higher Engineering Mathematics, Khanna Pub. Katsuhiko Ogata, Modern Control Engineering, PHI

H.K. Dass: Advanced Engineering Mathematics, (S. Chand & Company)

e-Learning Source:

https://nptel.ac.in/courses/111103070

https://nptel.ac.in/courses/111102129

https://www.youtube.com/watch?v=nkOjzzWmDmA

https://nptel.ac.in/courses/111106112

				Cou	rse Arti	culation	n Matrix	к: (Мар	ping of	COs with	h POs an	d PSOs)			
PO-PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO	POI	POZ	103	104	103	100	107	100	10)	1010	POH	PUIZ	P301	PS02	1303
CO1	1	2	2	2	1	1	2	3	2	1	1	2	1	3	1
CO2	3	2	1	2	2	3	1	1	1	1	2	1	2	1	3
CO3	2	3	1	1	1	1	3	3	1	2	1	2	1	1	2
CO4	3	2	3	2	3	2	1	2	2	1	2	3	1	2	3
CO5	1	1	1	1	2	1	1	2	3	3	3	2	3	1	1

1-Low Correlation; 2- Moderate Correlation; 3- Substantial Correlation

Name & Sign of Program Coordinator Sign & Seal of HoD

Effective from Session: 2015-16											
Course Code	CE213	Title of the Course	Hydraulic & Hydraulic Machines Lab		T	P	C				
Year	II	Semester	IV	0	0	2	1				
Pre-Requisite	NIL	Co-requisite	CE209								
Course Objectives		ts are expected to hand on experinderstand characteristics of flow	ence different hydraulic machine. and hydraulic machines								

	Course Outcomes
CO1	Students are able to learn to find the Manning's coefficient of roughness 'n' for the bed of a given flume.
CO2	Students are able to learn to study the velocity distribution in an open channel and to determine the energy and momentum correction factors.
CO3	Students are able to learn the rot dynamic pumps and their characteristics.
CO4	Students are able to calibrate a sharp-crested rectangular and triangular weirs.
CO5	Students are able to learn the characteristics of free hydraulic jump.
CO6	Students are able to learn the flow characteristics over a hump placed in an open channel.
CO7	Students are able to learn the flow through a horizontal contraction in a rectangular channel.

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO
1	Experiment -1	To determine the Manning's coefficient of roughness 'n' for the bed of a given flume.	02	1
2	Experiment-2	To study the velocity distribution in an open channel and to determine the energy and momentum correction factors.	02	2
3	Experiment-3	To study the flow characteristics over a hump placed in an open channel.	02	3
4	Experiment-4	To study the flow through a horizontal contraction in a rectangular channel.	02	4
5	Experiment-5	To calibrate a sharp-crested rectangular and triangular weirs.	02	5
6	Experiment-6	To calibrate a broad-crested weir and study the pressure distribution on the upstream face of the weir.	02	6
7	Experiment-7	To calibrate a Venturiflume.	02	7
8	Experiment-8	To study the characteristics of free hydraulic jump.	02	8
9	Experiment-9	To study the flow over a free overfall in an open channel and to determine the end depth.	02	9
10	Experiment-10	To study rotodynamic pumps and their characteristics.	02	10
11	Experiment-11	To study rotodynamic turbines and their characteristics	02	11

Reference Books:

Lab manual provided by the department

Streeter, V.L. "Fluid Mechanics", Mc Graw-Hill, N.Y, USA.

Garde, R.J. "Fluid Mechanics" RPH, Roorkee

Jain, A.K. "Mechanics of fluids", Khanna Publisher., Delhi. Additional Learning Source

Shames, "Mechanics of fluids" Mc Graw-Hill (Int. St. ed.) Auckland, NZ.

		Course Articulation Matrix: (Mapping of COs with POs and PSOs)												
PO-PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO	101	102	103	104	103	100	107	100	109	1010	1011	1012	1301	1302
CO1	2	0	0	2	0	0	0	0	0	0	0	0	2	3
CO2	3	0	0	2	0	0	0	0	0	0	0	0	2	3
CO3	2	0	0	3	0	0	0	0	0	0	0	0	2	3
CO4	2	0	0	2	0	0	0	0	0	0	0	0	2	3
CO5	3	0	0	3	0	0	0	0	0	0	0	0	2	3

1-Low Correlation; 2- Moderate Correlation; 3- Substantial Correlation

Name & Sign of Program Coordinator	Sign & Seal of HoD

Effective from Session: 2015-16													
Course Code	CE214	Title of the Course	Advance Survey Field Work	L	T	P	C						
Year	II	Semester	IV	0	0	2	1						
Pre-Requisite	NIL	Co-requisite	CE210										
Course Objectives	equipment to make stu & curves o To use tech	used in land surveying. Ident competent enough to, on ground	cience, and engineering to understand the measurement carry out triangulation, topographic mapping, layout congineering tools necessary for engineering practice.		-								

	Course Outcomes
CO1	Students are able setting up the plane table and plotting the given area by radiation method.
CO2	Students are able setting up the plane table and plotting the given area by intersection method.
CO3	Students are able to do traversing of the given area by plane table.
CO4	Students are able to solve three point problem by mechanical method.
CO5	Students are able to solve three point problem by graphical method.
CO6	Students are able to solve two point problem.
CO7	Students are able to carry out Triangulation and Trilateration of a given area.
CO8	Students are able to layout a simple circular curve on the ground using tape by perpendicular offset method.
CO9	Students are able to layout a simple circular curve on the ground using tape by radial offset method.
CO10	Students are able to layout a simple circular curve on the ground using two theodolite method.
CO11	Students are able to layout a building on the ground.
CO12	Students are able to plot the details as well as contours (topographic mapping) of area.
CO13	Students are able work on Electronic Total Survey Station.

Unit No.	Content of Unit	Contact Hrs.	Mapped CO
1	Setting up the plane table and plotting the given area by radiation method.	02	1
2	Setting up the plane table and plotting the given area by intersection method.	02	2
3	Traversing of the given area by plane table.	02	3
4	To solve three point problem by mechanical method.	02	4
5	To solve three point problem by graphical method.	02	5
6	To solve two point problem.	02	6
7	To carry out Triangulation and Trilateration of a given area.	02	7
8	Layout a simple circular curve on the ground using tape by perpendicular offset method.	02	8
9	Layout a simple circular curve on the ground using tape by radial offset method.	02	9
10	Layout a simple circular curve on the ground using two theodolite method.	02	10
11	Layout a building on the ground.	02	11
12	To plot the details as well as contours (topographic mapping) of area.	02	12
13	Demonstration and working on Electronic Total Survey Station.	02	13

	Reference Books:
1	Lab Manual Provided by the Department.

Kanetkar, T. P., "Surveying and Levelling" Vol I and II, Pune Vidyarthi Griha Prakashan, Pune, India.

Punmia, B. C., "Surveying Vol I and II" Laxmi Publications, Delhi, India.

	Course Articulation Matrix: (Mapping of COs with POs and PSOs)													
PO-PSO	PO1	PO2	PO3	DO4 D		PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO	roi	PO2	PO3	PO4	PO5	P00	ro/	rus	PO9	POIU	POH	PUIZ	P501	P502
CO1	2	0	0	0	2	0	0	0	1	2	0	2	2	3
CO2	2	0	0	1	2	0	0	0	2	2	0	3	2	3
CO3	2	0	0	1	2	0	0	0	1	2	0	2	2	3
CO4	2	0	0	1	2	0	0	0	2	2	0	3	2	3
CO5	2	0	0	2	2	0	0	0	2	2	0	2	2	3
CO6	2	0	0	0	2	0	0	0	1	2	0	2	2	3
CO7	2	0	0	1	2	0	0	0	2	2	0	3	2	3
CO8	2	0	0	1	2	0	0	0	2	2	0	3	2	3
CO9	2	0	0	2	2	0	0	0	2	2	0	2	2	3
CO10	2	0	0	0	2	0	0	0	1	2	0	2	2	3
CO11	2	0	0	1	2	0	0	0	2	2	0	3	2	3

Name & Sign of Program Coordinator	Sign & Seal of HoD

Effective from Session: 2015-16										
Course Code	CE215	Title of the Course	Concrete Technology Laboratory	L	T	P	C			
Year	II	Semester	IV	0	0	2	1			
Pre-Requisite		Co-requisite								
Course Objectives			s of ingredients of concrete. nerete in fresh and hardened state.							

Course Outcomes								
CO1	Able to evaluate the quality of cement for various concrete works.							
CO2	Able to evaluate the quality of fine and coarse aggregates for various concrete works.							
CO3	Ability to test the properties of fresh and hardened concrete.							

Unit No.	Title of the Experiments	Content of Unit	Contact Hrs.	Mapped CO
1	Cement	Normal Consistency of cement. Initial & final setting time of cement. Compressive strength of cement. Fineness of cement by air permeability method. Tensile strength.	06	CO1
2	Fine and Coarse Aggregate	Water absorption of aggregate. Sieve Analysis of Aggregate 8. Specific gravity & bulk density. Grading of aggregates. Sieve analysis of sand. Silt content of sand. Bulking of sand.	06	CO2
3	Fresh and Hardened Concrete	Slump Test. Compaction factor test. Vee Bee Consistometer test. Compressive Strength test. Flexural Strength test. Non-Destructive Test (Rebound Hammer and PUNDIT)	06	CO3

		Course Articulation Matrix: (Mapping of COs with POs and PSOs)												
PO-PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO	POI	PO2	PO3	PO4	105	P00	PO7	PU	PU9	POIU	POH	PO12	P501	P502
CO1	0	0	0	3	3	1	0	3	3	3	0	3	2	0
CO2	0	0	0	3	3	1	0	3	3	3	0	3	2	0
CO3	0	0	0	3	3	1	0	3	3	3	0	3	2	0

Name & Sign of Program Coordinator	Sign & Seal of HoD